Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(6): e0074223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916816

RESUMO

IMPORTANCE: Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.


Assuntos
Cianobactérias , Trichodesmium , Trichodesmium/genética , Cianobactérias/genética , Fixação de Nitrogênio
3.
Curr Biol ; 33(10): 1926-1938.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37080198

RESUMO

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.


Assuntos
Microbiota , Panicum , Panicum/genética , Estudo de Associação Genômica Ampla , Bactérias/genética , Genótipo
4.
ISME J ; 16(8): 1957-1969, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35523959

RESUMO

Drought is a major abiotic stress limiting agricultural productivity. Previous field-level experiments have demonstrated that drought decreases microbiome diversity in the root and rhizosphere. How these changes ultimately affect plant health remains elusive. Toward this end, we combined reductionist, transitional and ecological approaches, applied to the staple cereal crop sorghum to identify key root-associated microbes that robustly affect drought-stressed plant phenotypes. Fifty-three Arabidopsis-associated bacteria were applied to sorghum seeds and their effect on root growth was monitored. Two Arthrobacter strains caused root growth inhibition (RGI) in Arabidopsis and sorghum. In the context of synthetic communities, Variovorax strains were able to protect plants from Arthrobacter-caused RGI. As a transitional system, high-throughput phenotyping was used to test the synthetic communities. During drought stress, plants colonized by Arthrobacter had reduced growth and leaf water content. Plants colonized by both Arthrobacter and Variovorax performed as well or better than control plants. In parallel, we performed a field trial wherein sorghum was evaluated across drought conditions. By incorporating data on soil properties into the microbiome analysis, we accounted for experimental noise with a novel method and were able to observe the negative correlation between the abundance of Arthrobacter and plant growth. Having validated this approach, we cross-referenced datasets from the high-throughput phenotyping and field experiments and report a list of bacteria with high confidence that positively associated with plant growth under drought stress. In conclusion, a three-tiered experimental system successfully spanned the lab-to-field gap and identified beneficial and deleterious bacterial strains for sorghum under drought.


Assuntos
Arabidopsis , Microbiota , Sorghum , Bactérias/genética , Secas , Grão Comestível , Raízes de Plantas/microbiologia , Sorghum/microbiologia
5.
Microbiol Spectr ; 10(3): e0234621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579457

RESUMO

Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.


Assuntos
Enterobacteriaceae , Lignina , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Lignina/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
6.
Front Microbiol ; 11: 583361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281778

RESUMO

Despite the high abundance of Aquificae in many geothermal systems, these bacteria are difficult to culture and no viruses infecting members of this phylum have been isolated. Here, we describe the complete, circular dsDNA Uncultivated Virus Genome (UViG) of Thermocrinis Octopus Spring virus (TOSV), derived from metagenomic data, along with eight related UViGs representing three additional viral species. Despite low overall similarity among viruses from different hot springs, the genomes shared a high degree of synteny, and encoded numerous genes for nucleotide metabolism, including a PolA-type DNA polymerase polyprotein with likely accessory functions, a DNA Pol III sliding clamp, a thymidylate kinase, a DNA gyrase, a helicase, and a DNA methylase. Also present were conserved genes predicted to code for phage capsid, large and small subunits of terminase, portal protein, holin, and lytic transglycosylase, all consistent with a distant relatedness to cultivated Caudovirales. These viruses are predicted to infect Aquificae, as multiple CRISPR spacers matching the viral genomes were identified within the genomes and metagenomic contigs from these bacteria. Based on the predicted atypical bi-directional replication strategy, low sequence similarity to known viral genomes, and unique position in gene-sharing networks, we propose a new putative genus, "Pyrovirus," in the order Caudovirales.

7.
Front Microbiol ; 11: 572131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240229

RESUMO

Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.

8.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033130

RESUMO

Hydrologic changes modify microbial community structure and ecosystem functions, especially in wetland systems. Here, we present 24 metagenomes from a coastal freshwater wetland experiment in which we manipulated hydrologic conditions and plant presence. These wetland soil metagenomes will deepen our understanding of how hydrology and vegetation influence microbial functional diversity.

9.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912912

RESUMO

Forty-two bacterial strains were isolated from root samples of Sorghum bicolor The strains spanned 17 genera, including Dechloromonas, Duganella, Dyella, Flavobacterium, Herbaspirillum, Lutibacter, Mucilaginibacter, Novosphingobium, Paraburkholderia, Pedobacter, Pleomorphomonas, Rhizobacter, Rhizobium, Rhizomicrobium, Rugamonas, Variovorax, and Xanthobacter Their whole-genome sequences revealed diverse metabolic processes, including biological nitrogen fixation, in sorghum root microbiota.

10.
ISME J ; 14(4): 881-895, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31896786

RESUMO

Ocean viruses are abundant and infect 20-40% of surface microbes. Infected cells, termed virocells, are thus a predominant microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic reprogramming and resource requirements by each virocell, which were related to phage-host genomic complementarity and viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2 virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally, we relate phage-host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to guide incorporating viruses into ecosystem models.


Assuntos
Bacteriófagos/fisiologia , Pseudoalteromonas/virologia , Bacteriófagos/genética , Ecologia , Ecossistema , Microbiologia Ambiental , Vírus/genética
11.
Sci Data ; 6(1): 129, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332186

RESUMO

Metagenomic and metatranscriptomic time-series data covering a 52-day period in the fall of 2016 provide an inventory of bacterial and archaeal community genes, transcripts, and taxonomy during an intense dinoflagellate bloom in Monterey Bay, CA, USA. The dataset comprises 84 metagenomes (0.8 terabases), 82 metatranscriptomes (1.1 terabases), and 88 16S rRNA amplicon libraries from samples collected on 41 dates. The dataset also includes 88 18S rRNA amplicon libraries, characterizing the taxonomy of the eukaryotic community during the bloom. Accompanying the sequence data are chemical and biological measurements associated with each sample. These datasets will facilitate studies of the structure and function of marine bacterial communities during episodic phytoplankton blooms.


Assuntos
Archaea/classificação , Bactérias/classificação , Dinoflagelados/crescimento & desenvolvimento , Eutrofização , Metagenoma , Transcriptoma , California , Fitoplâncton/crescimento & desenvolvimento
12.
ISME J ; 13(11): 2800-2816, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31316134

RESUMO

We investigated Bacteroidetes during spring algae blooms in the southern North Sea in 2010-2012 using a time series of 38 deeply sequenced metagenomes. Initial partitioning yielded 6455 bins, from which we extracted 3101 metagenome-assembled genomes (MAGs) including 1286 Bacteroidetes MAGs covering ~120 mostly uncultivated species. We identified 13 dominant, recurrent Bacteroidetes clades carrying a restricted set of conserved polysaccharide utilization loci (PULs) that likely mediate the bulk of bacteroidetal algal polysaccharide degradation. The majority of PULs were predicted to target the diatom storage polysaccharide laminarin, alpha-glucans, alpha-mannose-rich substrates, and sulfated xylans. Metaproteomics at 14 selected points in time revealed expression of SusC-like proteins from PULs targeting all of these substrates. Analyses of abundant key players and their PUL repertoires over time furthermore suggested that fewer and simpler polysaccharides dominated early bloom stages, and that more complex polysaccharides became available as blooms progressed.


Assuntos
Bacteroidetes/genética , Bacteroidetes/metabolismo , Diatomáceas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/classificação , Diatomáceas/crescimento & desenvolvimento , Eutrofização , Genoma Bacteriano , Metagenoma , Mar do Norte
13.
Microbiol Resour Announc ; 8(18)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048387

RESUMO

The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.

14.
Proc Natl Acad Sci U S A ; 115(28): 7368-7373, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941552

RESUMO

Soil microbes that colonize plant roots and are responsive to differences in plant genotype remain to be ascertained for agronomically important crops. From a very large-scale longitudinal field study of 27 maize inbred lines planted in three fields, with partial replication 5 y later, we identify root-associated microbiota exhibiting reproducible associations with plant genotype. Analysis of 4,866 samples identified 143 operational taxonomic units (OTUs) whose variation in relative abundances across the samples was significantly regulated by plant genotype, and included five of seven core OTUs present in all samples. Plant genetic effects were significant amid the large effects of plant age on the rhizosphere microbiome, regardless of the specific community of each field, and despite microbiome responses to climate events. Seasonal patterns showed that the plant root microbiome is locally seeded, changes with plant growth, and responds to weather events. However, against this background of variation, specific taxa responded to differences in host genotype. If shown to have beneficial functions, microbes may be considered candidate traits for selective breeding.


Assuntos
Endogamia , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Rizosfera , Zea mays/microbiologia , Genótipo , Zea mays/genética
15.
ISME J ; 12(7): 1729-1742, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476143

RESUMO

Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.


Assuntos
Acidobacteria/metabolismo , Enxofre/metabolismo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredução , Solo/química , Microbiologia do Solo , Sulfatos/metabolismo , Sulfitos/metabolismo , Áreas Alagadas
16.
Stand Genomic Sci ; 12: 67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167704

RESUMO

Cyanobacterial mats are laminated microbial ecosystems which occur in highly diverse environments and which may provide a possible model for early life on Earth. Their ability to produce hydrogen also makes them of interest from a biotechnological and bioenergy perspective. Samples of an intertidal microbial mat from the Elkhorn Slough estuary in Monterey Bay, California, were transplanted to a greenhouse at NASA Ames Research Center to study a 24-h diel cycle, in the presence or absence of molybdate (which inhibits biohydrogen consumption by sulfate reducers). Here, we present metagenomic analyses of four samples that will be used as references for future metatranscriptomic analyses of this diel time series.

17.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959738

RESUMO

Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called "Planctomycete-specific" cytochrome c-encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called "Planctomycete-specific" cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.

18.
PLoS One ; 12(5): e0177189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545131

RESUMO

Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.


Assuntos
Baratas/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Metagenoma , Animais , Formigas/microbiologia , Biodiversidade , Microbioma Gastrointestinal/genética , Filogenia , RNA Ribossômico 16S
19.
PeerJ ; 5: e3134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396823

RESUMO

It is generally accepted that diverse, poorly characterized microorganisms reside deep within Earth's crust. One such lineage of deep subsurface-dwelling bacteria is an uncultivated member of the Firmicutes phylum that can dominate molecular surveys from both marine and continental rock fracture fluids, sometimes forming the sole member of a single-species microbiome. Here, we reconstructed a genome from basalt-hosted fluids of the deep subseafloor along the eastern Juan de Fuca Ridge flank and used a phylogenomic analysis to show that, despite vast differences in geographic origin and habitat, it forms a monophyletic clade with the terrestrial deep subsurface genome of "Candidatus Desulforudis audaxviator" MP104C. While a limited number of differences were observed between the marine genome of "Candidatus Desulfopertinax cowenii" modA32 and its terrestrial relative that may be of potential adaptive importance, here it is revealed that the two are remarkably similar thermophiles possessing the genetic capacity for motility, sporulation, hydrogenotrophy, chemoorganotrophy, dissimilatory sulfate reduction, and the ability to fix inorganic carbon via the Wood-Ljungdahl pathway for chemoautotrophic growth. Our results provide insights into the genetic repertoire within marine and terrestrial members of a bacterial lineage that is widespread in the global deep subsurface biosphere, and provides a natural means to investigate adaptations specific to these two environments.

20.
ISME J ; 10(10): 2365-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27015005

RESUMO

Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16-174 nmol cm(-3) per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Microbiologia do Solo , Sulfatos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Fermentação , Metano/metabolismo , Oxirredução , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...